Skip to contents
Fit an empirical logistic spline
-
logitSplines_start()
- Get the initial estimates for a logistic spline fit by assuming the
binomial detection probability
-
logit_ztbinom()
- Fitting an empirical logistic spline curve for detection proportion
-
cappedLogit_ztbinom()
- Fitting an empirical logistic spline curve for detection proportion with
capped probabilities
Fit a detection probability curve
-
dpc()
- Detection probability curve for label free shotgun proteomics data
assuming observed normal intensities
-
plotEmpSplines()
- Plot the fitted empirical spline of detected proportions to average observed
intensities
-
plotDPC()
- Plot the detection probability curve
-
getNuisance()
- Get nuisance parameters and an initial estimation of the detection
probability curve (DPC)
-
hyperparams()
- Estimation of hyperparameters for the empirical Bayes method
-
gatherResults()
- Wrapper function of all presented results
-
datasetA
- Dataset A: Hybrid proteome data
-
datasetB
- Dataset B: Single cell proteomes
-
datasetC
- Dataset C: HepG2 technical replicate data
-
datasetD
- Dataset D: Human blood plasma proteome
-
shbheart
- Supplementary Dataset: Sydney Heart Bank data
-
ratio2.5
- Supplementary Dataset : UPS1 spiked in yeast extract